NASA's Hubble

Superhot Planet Likely Possesses Comet-like Tail

As if the debate over what is and what is not a planet hasn't gotten confusing enough, Hubble Space Telescope astronomers have now confirmed the existence of a tortured, baked object that could be called a "cometary planet."
This artist's illustration shows a view of the gas giant planet HD 209458b, as seen from the surface of a hypothetical nearby companion object. The planet is orbiting so close to its sunlike star that its heated atmosphere is escaping into space. Spectroscopic observations by the new Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope suggest that powerful stellar winds are sweeping the castoff material behind the scorched planet and shaping it into a comet-like tail.

This artist's illustration shows a view of the gas giant planet HD 209458b, as seen from the surface of a hypothetical nearby companion object. The planet is orbiting so close to its sunlike star that its heated atmosphere is escaping into space. Spectroscopic observations by the new Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope suggest that powerful stellar winds are sweeping the castoff material behind the scorched planet and shaping it into a comet-like tail.

The gas giant planet, dubbed HD 209458b, is orbiting so close to its star that its heated atmosphere is escaping away into space. Now, observations by the new Cosmic Origins Spectrograph (COS) aboard NASA's Hubble suggest that powerful stellar winds are sweeping the castoff material behind the scorched planet and shaping it into a comet-like tail.

"Since 2003 scientists have theorized that the lost mass is being pushed back into a tail and have even calculated what the tail looks like," says astronomer Jeffrey Linsky of the University of Colorado in Boulder, leader of the COS study. "We think we have the best observational evidence to support that theory. We have measured gas coming off the planet at specific speeds, some coming toward Earth. The most likely interpretation is that we have measured the velocity of material in a tail."

HD 209458b weighs slightly less than Jupiter, but it orbits 100 times closer to its star than Jupiter does. The roasted planet zips around in a mere 3.5 days. (In contrast, our solar system's speedster, Mercury, orbits the Sun in a leisurely 88 days.) The planet is one of the most intensely scrutinized extrasolar planets because it is one of the few known alien worlds that can be seen passing in front of, or transiting, its star. The transit causes the starlight to dim slightly. In fact, the gas giant is the first alien world discovered to transit its parent star. It orbits the star HD 209458, located 153 light-years from Earth.

Linsky and his team used COS to analyze the planet's atmosphere during transiting events. During a transit, astronomers can study the structure and chemical makeup of a planet's atmosphere by sampling the starlight that passes through it. The dip in starlight due to the planet's passage, excluding the planet's atmosphere, is very small, only 1.5 percent. When the atmosphere is added, the dip jumps to 8 percent, indicating a bloated atmosphere.

COS detected the heavy elements carbon and silicon in the planet's super-hot (2,000-degree-Fahrenheit) atmosphere. This detection reveals that the parent star is heating the entire atmosphere, dredging up the heavier elements and allowing them to escape the planet.

The COS data also showed that the material leaving the planet was not all traveling at the same velocity. "We found gas escaping at high velocities, with a large amount of this gas flowing toward us at 22,000 miles per hour," Linsky explains. "This large gas flow is likely gas swept up by the stellar wind to form the comet-like tail trailing the planet."

Hubble's newest spectrograph, with its ability to probe a planet's chemistry at ultraviolet wavelengths that are not accessible to ground-based telescopes, is proving to be an important instrument for probing the atmospheres of "hot Jupiters" like HD 209458b. Astronomers have also used COS to sample the atmosphere of another baked planet, WASP-12b, whose puffy atmosphere is spilling onto its star.

Another Hubble instrument, the Space Telescope Imaging Spectrograph (STIS), observed HD 209458b in 2003. The STIS data showed an active, evaporating atmosphere, and a comet-tail-like structure was suggested as a possibility. But STIS wasn't able to obtain the spectroscopic detail necessary to show an earthward-moving component of the gas during transits. Because of COS's unique combination of very high ultraviolet sensitivity and good spectral resolution, the earthward moving component of the gas — the tail — could be directly detected for the first time.

Although this "extreme" planet is getting roasted by its star, it won't be destroyed anytime soon. "It will take about a trillion years for the planet to evaporate," Linsky says.

Source: HubbleSite
NASA's Hubble - Superhot Planet Likely Possesses Comet-like Tail | Redshift live

NASA's Hubble

Superhot Planet Likely Possesses Comet-like Tail

As if the debate over what is and what is not a planet hasn't gotten confusing enough, Hubble Space Telescope astronomers have now confirmed the existence of a tortured, baked object that could be called a "cometary planet."
This artist's illustration shows a view of the gas giant planet HD 209458b, as seen from the surface of a hypothetical nearby companion object. The planet is orbiting so close to its sunlike star that its heated atmosphere is escaping into space. Spectroscopic observations by the new Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope suggest that powerful stellar winds are sweeping the castoff material behind the scorched planet and shaping it into a comet-like tail.

This artist's illustration shows a view of the gas giant planet HD 209458b, as seen from the surface of a hypothetical nearby companion object. The planet is orbiting so close to its sunlike star that its heated atmosphere is escaping into space. Spectroscopic observations by the new Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope suggest that powerful stellar winds are sweeping the castoff material behind the scorched planet and shaping it into a comet-like tail.

The gas giant planet, dubbed HD 209458b, is orbiting so close to its star that its heated atmosphere is escaping away into space. Now, observations by the new Cosmic Origins Spectrograph (COS) aboard NASA's Hubble suggest that powerful stellar winds are sweeping the castoff material behind the scorched planet and shaping it into a comet-like tail.

"Since 2003 scientists have theorized that the lost mass is being pushed back into a tail and have even calculated what the tail looks like," says astronomer Jeffrey Linsky of the University of Colorado in Boulder, leader of the COS study. "We think we have the best observational evidence to support that theory. We have measured gas coming off the planet at specific speeds, some coming toward Earth. The most likely interpretation is that we have measured the velocity of material in a tail."

HD 209458b weighs slightly less than Jupiter, but it orbits 100 times closer to its star than Jupiter does. The roasted planet zips around in a mere 3.5 days. (In contrast, our solar system's speedster, Mercury, orbits the Sun in a leisurely 88 days.) The planet is one of the most intensely scrutinized extrasolar planets because it is one of the few known alien worlds that can be seen passing in front of, or transiting, its star. The transit causes the starlight to dim slightly. In fact, the gas giant is the first alien world discovered to transit its parent star. It orbits the star HD 209458, located 153 light-years from Earth.

Linsky and his team used COS to analyze the planet's atmosphere during transiting events. During a transit, astronomers can study the structure and chemical makeup of a planet's atmosphere by sampling the starlight that passes through it. The dip in starlight due to the planet's passage, excluding the planet's atmosphere, is very small, only 1.5 percent. When the atmosphere is added, the dip jumps to 8 percent, indicating a bloated atmosphere.

COS detected the heavy elements carbon and silicon in the planet's super-hot (2,000-degree-Fahrenheit) atmosphere. This detection reveals that the parent star is heating the entire atmosphere, dredging up the heavier elements and allowing them to escape the planet.

The COS data also showed that the material leaving the planet was not all traveling at the same velocity. "We found gas escaping at high velocities, with a large amount of this gas flowing toward us at 22,000 miles per hour," Linsky explains. "This large gas flow is likely gas swept up by the stellar wind to form the comet-like tail trailing the planet."

Hubble's newest spectrograph, with its ability to probe a planet's chemistry at ultraviolet wavelengths that are not accessible to ground-based telescopes, is proving to be an important instrument for probing the atmospheres of "hot Jupiters" like HD 209458b. Astronomers have also used COS to sample the atmosphere of another baked planet, WASP-12b, whose puffy atmosphere is spilling onto its star.

Another Hubble instrument, the Space Telescope Imaging Spectrograph (STIS), observed HD 209458b in 2003. The STIS data showed an active, evaporating atmosphere, and a comet-tail-like structure was suggested as a possibility. But STIS wasn't able to obtain the spectroscopic detail necessary to show an earthward-moving component of the gas during transits. Because of COS's unique combination of very high ultraviolet sensitivity and good spectral resolution, the earthward moving component of the gas — the tail — could be directly detected for the first time.

Although this "extreme" planet is getting roasted by its star, it won't be destroyed anytime soon. "It will take about a trillion years for the planet to evaporate," Linsky says.

Source: HubbleSite
» print article
Related articles:
Artist's impression of the planetary system around the red dwarf Gliese 581. Using the instrument HARPS on the ESO 3.6-m telescope, astronomers have uncovered 3 planets, all of relative low-mass: 5, 8 and 15 Earth masses. The five Earth-mass planet (seen in foreground - Gliese 581 c) makes a full orbit around the star in 13 days, the other two in 5 (the blue, Neptunian-like planet - Gliese 581 b) and 84 days (the most remote one, Gliese 581 d).
Earth-like planets

Lightest Exoplanet discovered

» go to article
Artist’s impression of a baby star still surrounded by a protoplanetary disc in which planets are forming. Using ESO’s very successful HARPS spectrograph, a team of astronomers has found that Sun-like stars which host planets have destroyed their lithium much more efficiently than planet-free stars.
New Ways to Find Exoplanets

Exoplanets Clue to Sun's Curious Chemistry

» go to article
In this artist's conception, a hypothetical alien world and its moon orbit a hot, massive, type B star. Due to the short lifetime of such a star, complex life is unlikely to be found there. Although not good targets in the hunt for extraterrestrials, such planetary systems help give us a better understanding of planet formation.
New Exoplanets

New Massive Hunting Grounds For Exoplanets

» go to article
This montage shows the image and the spectrum of the star and the planet as seen with the NACO adaptive optics instrument on ESO’s Very Large Telescope. As the host star is several thousand times brighter than the planet, this is a remarkable achievement at the border of what is technically possible. According to the scientists it is like trying to see what a candle is made of, by observing it from a distance of two kilometres when it’s next to a blindingly bright 300 Watt lamp.
VLT Captures Direct Spectrum

Groundbreaking Exploration of Exoplanets

» go to article
This image shows the light from three planets orbiting a star 120 light-years away. The planets' star, called HR8799, is located at the spot marked with an "X." This picture was taken using a small, 1.5-meter (4.9-foot) portion of the Palomar Observatory's Hale Telescope, north of San Diego, Calif. This is the first time a picture of planets beyond our solar system has been captured using a telescope with a modest-sized mirror -- previous images were taken using larger telescopes. The three planets, called HR8799b, c and d, are thought to be gas giants like Jupiter, but more massive. They orbit their host star at roughly 24, 38 and 68 times the distance between our Earth and sun, respectively (Jupiter resides at about 5 times the Earth-sun distance).
Exoplanets

Small, Ground-Based Telescope Images Three Exoplanets

» go to article
Astronomers have measured a superstorm for the first time in the atmosphere of an exoplanet, the well-studied “hot Jupiter” HD209458b. The very high-precision observations of carbon monoxide gas show that it is streaming at enormous speed from the extremely hot day side to the cooler night side of the planet.

This artist’s impression shows the Jupiter-like transiting planet around its solar-like host star.
Exoplanets

VLT Detects First Superstorm on Exoplanet

» go to article
NASA’s Hubble Space Telescope - ACS
Image Credit: NASA, ESA, and R. Sahai (NASA/Jet Propulsion Laboratory)
Jan 7, 2008

Hubble Finds Stars That 'Go Ballistic'

» go to article
In this tightly cropped image, the NASA space shuttle Atlantis is seen in silhouette during solar transit, Tuesday, May 12, 2009, from Florida. This image was made before Atlantis and the crew of STS-125 had grappled the Hubble Space Telescope.
Service mission successful so far

Last servicing of Hubble under way

» go to article
This is an artist's impression of a small Kuiper Belt Object (KBO) occulting a star. NASA's Hubble Space Telescope recorded this brief event and allowed astronomers to determine that the KBO was only one-half of a mile across, setting a new record for the smallest object ever seen in the Kuiper Belt.
Kuiper Belt

Hubble Finds Needle In A Haystack

» go to article
A full-context view of P/2010 A2.
Cosmic Crash

Hubble Sees Asteroid Collision

» go to article
This craggy fantasy mountaintop shrouded by wispy clouds looks like a bizarre landscape from Tolkien’s The Lord of the Rings. The NASA/ESA Hubble Space Telescope image, which is even more dramatic than fiction, captures the chaotic activity atop a pillar of gas and dust, three light-years tall, which is being eaten away by the brilliant light from nearby bright stars. The pillar is also being assaulted from within, as infant stars buried inside it fire off jets of gas that can be seen streaming from towering peaks.
Hubble Space Telescope

Hubble celebrates 20 years of awe and discovery

» go to article
The core of the star cluster in NGC 3603 is shown in great detail in an image from the Wide Field Planetary Camera 2 (WFPC2) camera on the NASA/ESA Hubble Space Telescope. The image is a colour composite of observations in the WFPC2 filters F555W (blue), F675W (green) and F814W (red). This view shows the second of two images taken ten years apart that were used to detect the motions of individual stars within the cluster for the first time. The field of view is about 20 arcseconds across.
Surprising signs of unrest in massive star cluster

Hubble catches stars on the move

» go to article
Mysterious Flash on Jupiter left no debris cloud
Planetary System

Hubble scrutinises site of mysterious flash on Jupiter

» go to article
This broad vista of young stars and gas clouds in our neighbouring galaxy, the Large Magellanic Cloud, was captured by the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys (ACS). This region is named LHA 120-N 11, informally known as N11, and is one of the most active star-forming regions in the nearby Universe. This picture is a mosaic of ACS data from five different positions and covers a region of about 6 arcmin across.
The Large Magellanic Cloud

Hubble captures bubbles and baby stars

» go to article
A cosmic concoction in NGC 2467
Hubble Space Telescope image of NGC 2467

Hubble snaps sharp image of cosmic concoction

» go to article
Search
Astronomy Software

Solar Eclipse by Redshift

Solar Eclipse by Redshift for iOS

Observe, understand, and marvel at the solar eclipse on August 21, 2017! » more

Solar Eclipse by Redshift

Solar Eclipse by Redshift for Android

Observe, understand, and marvel at the solar eclipse on August 21, 2017! » more

Redshift 8 Premium

Redshift 8 Premium - Download Edition (Multilingua Edition)

Explore the universe from your PC with the award-winning and professional planetarium software - Languages: German, English, French
 » more

Redshift 8 Premium DL deutsch/engl 2

Redshift 8 Premium - Update from older versions

Update from Redshift 7 or older to the current version of the professional planetarium software - Languages: German, English, French
 » more

Redshift 8 Compact

Redshift 8 Compact - Download Edition

The professional planetarium software for beginners » more

NASA's Hubble

Superhot Planet Likely Possesses Comet-like Tail

As if the debate over what is and what is not a planet hasn't gotten confusing enough, Hubble Space Telescope astronomers have now confirmed the existence of a tortured, baked object that could be called a "cometary planet."
This artist's illustration shows a view of the gas giant planet HD 209458b, as seen from the surface of a hypothetical nearby companion object. The planet is orbiting so close to its sunlike star that its heated atmosphere is escaping into space. Spectroscopic observations by the new Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope suggest that powerful stellar winds are sweeping the castoff material behind the scorched planet and shaping it into a comet-like tail.

This artist's illustration shows a view of the gas giant planet HD 209458b, as seen from the surface of a hypothetical nearby companion object. The planet is orbiting so close to its sunlike star that its heated atmosphere is escaping into space. Spectroscopic observations by the new Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope suggest that powerful stellar winds are sweeping the castoff material behind the scorched planet and shaping it into a comet-like tail.

The gas giant planet, dubbed HD 209458b, is orbiting so close to its star that its heated atmosphere is escaping away into space. Now, observations by the new Cosmic Origins Spectrograph (COS) aboard NASA's Hubble suggest that powerful stellar winds are sweeping the castoff material behind the scorched planet and shaping it into a comet-like tail.

"Since 2003 scientists have theorized that the lost mass is being pushed back into a tail and have even calculated what the tail looks like," says astronomer Jeffrey Linsky of the University of Colorado in Boulder, leader of the COS study. "We think we have the best observational evidence to support that theory. We have measured gas coming off the planet at specific speeds, some coming toward Earth. The most likely interpretation is that we have measured the velocity of material in a tail."

HD 209458b weighs slightly less than Jupiter, but it orbits 100 times closer to its star than Jupiter does. The roasted planet zips around in a mere 3.5 days. (In contrast, our solar system's speedster, Mercury, orbits the Sun in a leisurely 88 days.) The planet is one of the most intensely scrutinized extrasolar planets because it is one of the few known alien worlds that can be seen passing in front of, or transiting, its star. The transit causes the starlight to dim slightly. In fact, the gas giant is the first alien world discovered to transit its parent star. It orbits the star HD 209458, located 153 light-years from Earth.

Linsky and his team used COS to analyze the planet's atmosphere during transiting events. During a transit, astronomers can study the structure and chemical makeup of a planet's atmosphere by sampling the starlight that passes through it. The dip in starlight due to the planet's passage, excluding the planet's atmosphere, is very small, only 1.5 percent. When the atmosphere is added, the dip jumps to 8 percent, indicating a bloated atmosphere.

COS detected the heavy elements carbon and silicon in the planet's super-hot (2,000-degree-Fahrenheit) atmosphere. This detection reveals that the parent star is heating the entire atmosphere, dredging up the heavier elements and allowing them to escape the planet.

The COS data also showed that the material leaving the planet was not all traveling at the same velocity. "We found gas escaping at high velocities, with a large amount of this gas flowing toward us at 22,000 miles per hour," Linsky explains. "This large gas flow is likely gas swept up by the stellar wind to form the comet-like tail trailing the planet."

Hubble's newest spectrograph, with its ability to probe a planet's chemistry at ultraviolet wavelengths that are not accessible to ground-based telescopes, is proving to be an important instrument for probing the atmospheres of "hot Jupiters" like HD 209458b. Astronomers have also used COS to sample the atmosphere of another baked planet, WASP-12b, whose puffy atmosphere is spilling onto its star.

Another Hubble instrument, the Space Telescope Imaging Spectrograph (STIS), observed HD 209458b in 2003. The STIS data showed an active, evaporating atmosphere, and a comet-tail-like structure was suggested as a possibility. But STIS wasn't able to obtain the spectroscopic detail necessary to show an earthward-moving component of the gas during transits. Because of COS's unique combination of very high ultraviolet sensitivity and good spectral resolution, the earthward moving component of the gas — the tail — could be directly detected for the first time.

Although this "extreme" planet is getting roasted by its star, it won't be destroyed anytime soon. "It will take about a trillion years for the planet to evaporate," Linsky says.

Source: HubbleSite
» print article

Search
Astronomy Software

Solar Eclipse by Redshift

Solar Eclipse by Redshift for iOS

Observe, understand, and marvel at the solar eclipse on August 21, 2017! » more

Solar Eclipse by Redshift

Solar Eclipse by Redshift for Android

Observe, understand, and marvel at the solar eclipse on August 21, 2017! » more

Redshift 8 Premium

Redshift 8 Premium - Download Edition (Multilingua Edition)

Explore the universe from your PC with the award-winning and professional planetarium software - Languages: German, English, French
 » more

Redshift 8 Premium DL deutsch/engl 2

Redshift 8 Premium - Update from older versions

Update from Redshift 7 or older to the current version of the professional planetarium software - Languages: German, English, French
 » more

Redshift 8 Compact

Redshift 8 Compact - Download Edition

The professional planetarium software for beginners » more