Curious features

A Disturbed Galactic Duo

The galaxies in this cosmic pairing, captured by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, display some curious features, demonstrating that each member of the duo is close enough to feel the distorting gravitational influence of the other. The gravitational tug of war has warped the spiral shape of one galaxy, NGC 3169, and fragmented the dust lanes in its companion NGC 3166. Meanwhile, a third, smaller galaxy to the lower right, NGC 3165, has a front-row seat to the gravitational twisting and pulling of its bigger neighbours.
Spiral galaxies NGC 3169 and NGC 3166

Spiral galaxies NGC 3169 and NGC 3166

This galactic grouping, found about 70 million light-years away in the constellation Sextans (The Sextant), was discovered by the English astronomer William Herschel in 1783. Modern astronomers have gauged the distance between NGC 3169 (left) and NGC 3166 (right) as a mere 50 000 light-years, a separation that is only about half the diameter of the Milky Way galaxy. In such tight quarters, gravity can start to play havoc with galactic structure.

Spiral galaxies like NGC 3169 and NGC 3166 tend to have orderly swirls of stars and dust pinwheeling about their glowing centres. Close encounters with other massive objects can jumble this classic configuration, often serving as a disfiguring prelude to the merging of galaxies into one larger galaxy. So far, the interactions of NGC 3169 and NGC 3166 have just lent a bit of character. NGC 3169’s arms, shining bright with big, young, blue stars, have been teased apart, and lots of luminous gas has been drawn out from its disc. In NGC 3166’s case, the dust lanes that also usually outline spiral arms are in disarray. Unlike its bluer counterpart, NGC 3166 is not forming many new stars.

NGC 3169 has another distinction: the faint yellow dot beaming through a veil of dark dust just to the left of and close to the galaxy’s centre [1]. This flash is the leftover of a supernova detected in 2003 and known accordingly as SN 2003cg. A supernova of this variety, classified as a Type Ia, is thought to occur when a dense, hot star called a white dwarf — a remnant of medium-sized stars like our Sun — gravitationally sucks gas away from a nearby companion star. This added fuel eventually causes the whole star to explode in a runaway fusion reaction.

The new image presented here of a remarkable galactic dynamic duo is based on data selected by Igor Chekalin for ESO’s Hidden Treasures 2010 astrophotography competition. Chekalin won the first overall prize and this image received the second highest ranking of the nearly 100 contest entries [2].
Notes

[1] Other much more noticeable points of light, such as the one toward the left end of the spiral arm running underneath of NGC 3169’s core, are stars within the Milky Way that happen to fall by chance very close to the line of sight between our telescopes and the galaxies.

[2] ESO’s Hidden Treasures 2010 competition gave amateur astronomers the opportunity to search through ESO’s vast archives of astronomical data, hoping to find a well-hidden gem that needed polishing by the entrants.

Source: ESO
» print article
Related articles:
Observations with the European Southern Observatory’s Very Large Telescope
Discovery

A Very Cool Pair of Brown Dwarfs

» go to article
NASA's Cassini spacecraft chronicles the change of seasons as it captures clouds concentrated near the equator of Saturn's largest moon, Titan.

Methane clouds in the troposphere, the lowest part of the atmosphere, appear white here and are mostly near Titan's equator. The darkest areas are surface features that have a low albedo, meaning they do not reflect much light. Cassini observations of clouds like these provide evidence of a seasonal shift of Titan's weather systems to low latitudes following the August 2009 equinox in the Saturnian system. (During equinox, the sun lies directly over the equator. See PIA11667 to learn how the sun's illumination of the Saturnian system changed during the equinox transition to spring in the northern hemispheres and to fall in the southern hemispheres of the planet and its moons.)
Equatorial Titan Clouds

Cassini Sees Seasonal Rains Transform Titan's Surface

» go to article
A view from the bustling center of our galactic metropolis. Spitzer Space Telescope offers us a fresh, infrared view of the frenzied scene at the center of our Milky Way, revealing what lies behind the dust.
Our Milky Way

Stars Gather in 'Downtown' Milky Way

» go to article
This very detailed false-colour image from ESO’s Very Large Telescope shows the dramatic effects of very young stars on the dust and gas from which they were born in the star-forming region NGC 6729. The baby stars are invisible in this picture, being hidden behind dust clouds at the upper left of the picture, but material they are ejecting is crashing into the surroundings at speeds of that can be as high as one million kilometres per hour. This picture was taken by the FORS1 instrument and records the scene in the light of glowing hydrogen and sulphur.
New-born stars wreak havoc in their nursery

The Drama of Starbirth

» go to article
This image of NGC 247, taken by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory in Chile, reveals the fine details of this highly inclined spiral galaxy and its rich backdrop. Astronomers say this highly tilted orientation, when viewed from Earth, explains why the distance to this prominent galaxy was previously overestimated.
A spiral galaxy

The Dusty Disc of NGC 247

» go to article
This artist’s impression shows the disc around the young star T Cha. Using ESO’s Very Large Telescope this disc has been found to be in two parts, a narrow ring close to the star and the remainder of the disc material much further out. A companion object, seen in the foreground, has been detected in the gap in the disc that may be either a brown dwarf or a large planet. The inner dust disc is lost in the glare of the star on this picture.
The young star T Cha

Planet Formation in Action?

» go to article
Search
Astronomy Software

Redshift Android

Redshift for Android

The award winning Astronomy Software Redshift for Android. » more

Redshift Pro

Redshift Pro - Astronomy for iOS

The most advanced Redshift app » more

Redshift Astronomy

Redshift - Astronomy for iOS

The award winning Astronomy Software Redshift for iPhone, iPod touch and iPad. » more

Redshift Discover Astronomy deutsch

Redshift Compact - Discover Astronomy for iOS

The beginners version of the leading astronomy App Redshift » more

Redshift 8 Premium

Redshift 8 Premium - Download Edition (Multilingua Edition)

Explore the universe from your PC with the award-winning and professional planetarium software - Languages: German, English, French
 » more

Redshift 8 Premium DL deutsch/engl 2

Redshift 8 Premium - Update from older versions

Update from Redshift 7 or older to the current version of the professional planetarium software - Languages: German, English, French
 » more

Redshift 8 Compact

Redshift 8 Compact - Download Edition

The professional planetarium software for beginners » more