Equatorial Titan Clouds

Cassini Sees Seasonal Rains Transform Titan's Surface

As spring continues to unfold at Saturn, April showers on the planet's largest moon, Titan, have brought methane rain to its equatorial deserts, as revealed in images captured by NASA's Cassini spacecraft. This is the first time scientists have obtained current evidence of rain soaking Titan's surface at low latitudes.
NASA's Cassini spacecraft chronicles the change of seasons as it captures clouds concentrated near the equator of Saturn's largest moon, Titan.

Methane clouds in the troposphere, the lowest part of the atmosphere, appear white here and are mostly near Titan's equator. The darkest areas are surface features that have a low albedo, meaning they do not reflect much light. Cassini observations of clouds like these provide evidence of a seasonal shift of Titan's weather systems to low latitudes following the August 2009 equinox in the Saturnian system. (During equinox, the sun lies directly over the equator. See PIA11667 to learn how the sun's illumination of the Saturnian system changed during the equinox transition to spring in the northern hemispheres and to fall in the southern hemispheres of the planet and its moons.)

NASA's Cassini spacecraft chronicles the change of seasons as it captures clouds concentrated near the equator of Saturn's largest moon, Titan. Methane clouds in the troposphere, the lowest part of the atmosphere, appear white here and are mostly near Titan's equator. The darkest areas are surface features that have a low albedo, meaning they do not reflect much light. Cassini observations of clouds like these provide evidence of a seasonal shift of Titan's weather systems to low latitudes following the August 2009 equinox in the Saturnian system. (During equinox, the sun lies directly over the equator. See PIA11667 to learn how the sun's illumination of the Saturnian system changed during the equinox transition to spring in the northern hemispheres and to fall in the southern hemispheres of the planet and its moons.)

Extensive rain from large cloud systems, spotted by Cassini's cameras in late 2010, has apparently darkened the surface of the moon. The best explanation is these areas remained wet after methane rainstorms. The observations released today in the journal Science, combined with earlier results in Geophysical Research Letters last month, show the weather systems of Titan's thick atmosphere and the changes wrought on its surface are affected by the changing seasons.

"It's amazing to be watching such familiar activity as rainstorms and seasonal changes in weather patterns on a distant, icy satellite," said Elizabeth Turtle, a Cassini imaging team associate at the Johns Hopkins University Applied Physics Lab in Laurel, Md., and lead author of today's publication. "These observations are helping us to understand how Titan works as a system, as well as similar processes on our own planet."

The Saturn system experienced equinox, when the sun lies directly over a planet's equator and seasons change, in August 2009. (A full Saturn "year" is almost 30 Earth years.) Years of Cassini observations suggest Titan's global atmospheric circulation pattern responds to the changes in solar illumination, influenced by the atmosphere and the surface, as detailed in the Geophysical Research Letters paper. Cassini found the surface temperature responds more rapidly to sunlight changes than does the thick atmosphere. The changing circulation pattern produced clouds in Titan's equatorial region.

Clouds on Titan are formed of methane as part of an Earth-like cycle that uses methane instead of water. On Titan, methane fills lakes on the surface, saturates clouds in the atmosphere, and falls as rain. Though there is evidence that liquids have flowed on the surface at Titan's equator in the past, liquid hydrocarbons, such as methane and ethane, had only been observed on the surface in lakes at polar latitudes. The vast expanses of dunes that dominate Titan's equatorial regions require a predominantly arid climate. Scientists suspected that clouds might appear at Titan's equatorial latitudes as spring in the northern hemisphere progressed. But they were not sure if dry channels previously observed were cut by seasonal rains or remained from an earlier, wetter climate.

An arrow-shaped storm appeared in the equatorial regions on Sept. 27, 2010 -- the equivalent of early April in Titan's "year" -- and a broad band of clouds appeared the next month. As described in the Science paper, over the next few months, Cassini's imaging science subsystem captured short-lived surface changes visible in images of Titan's surface. A 193,000-square-mile (500,000-square-kilometer) region along the southern boundary of Titan's Belet dune field, as well as smaller areas nearby, had become darker. Scientists compared the imaging data to data obtained by other instruments and ruled out other possible causes for surface changes. They concluded this change in brightness is most likely the result of surface wetting by methane rain.

These observations suggest that recent weather on Titan is similar to that over Earth's tropics. In tropical regions, Earth receives its most direct sunlight, creating a band of rising motion and rain clouds that encircle the planet.

"These outbreaks may be the Titan equivalent of what creates Earth's tropical rainforest climates, even though the delayed reaction to the change of seasons and the apparently sudden shift is more reminiscent of Earth's behavior over the tropical oceans than over tropical land areas," said Tony Del Genio of NASA's Goddard Institute for Space Studies, New York, a co-author and a member of the Cassini imaging team.

On Earth, the tropical bands of rain clouds shift slightly with the seasons but are present within the tropics year-round. On Titan, such extensive bands of clouds may only be prevalent in the tropics near the equinoxes and move to much higher latitudes as the planet approaches the solstices. The imaging team intends to watch whether Titan evolves in this fashion as the seasons progress from spring toward northern summer.

"It is patently clear that there is so much more to learn from Cassini about seasonal forcing of a complex surface-atmosphere system like Titan's and, in turn, how it is similar to, or differs from, the Earth's," said Carolyn Porco, Cassini imaging team lead at the Space Science Institute, Boulder, Colo. "We are eager to see what the rest of Cassini's Solstice Mission will bring."

Source: NASA
» print article
Related articles:
This mosaic of images from NASA's Cassini spacecraft shows three fan-like structures in Saturn's tenuous F ring. Such "fans" suggest the existence of additional objects in the F ring.
NASA´s Spacecraft

Cassini Sees Moon Building Giant Snowballs in Saturn Ring

» go to article
On the left, Saturn's moon Enceladus is backlit by the sun, showing the fountain-like sources of the fine spray of material that towers over the south polar region. On the right, is a composite image of Titan.
Enceladus and Titan

Cassini Double Play

» go to article
Amateur astronomer Christopher Go took this image of the storm on March 13, 2010. The arrow indicates the location of the storm and the red outlines show where Cassini's composite infrared spectrometer gathered data.
Planetary System

Cassini and Amateurs Chase Storm on Saturn

» go to article
NASA's Cassini spacecraft captured the first lightning flashes on Saturn when it captured these images.
The Saturnian System

Cassini Sees Lightning on Saturn

» go to article
This natural color view from the Cassini spacecraft highlights the myriad gradations in the transparency of Saturn's inner rings.
Strange Weather On Saturn

Cassini Shows Saturnian Roller Derby

» go to article
In this unique mosaic image combining high-resolution data from the imaging science subsystem and composite infrared spectrometer aboard NASA's Cassini spacecraft, pockets of heat appear along one of the mysterious fractures in the south polar region of Saturn's moon Enceladus.
Hotspots at Enceladus

Cassini Finds Plethora of Plumes

» go to article
An aurora, shining high above the northern part of Saturn, moves from the night side to the day side of the planet in this movie recorded by Cassini.
Space Weather

Cassini Captures Ghostly Dance of Saturn's Northern Lights

» go to article
This unprocessed image was captured by NASA's Cassini spacecraft during its Nov. 21, 2009 flyby of Saturn's moon Enceladus. It shows the moon's south polar region, where jets of water vapor and other particles spew from fissures on the surface.
Enceladus' Mighty Plume

Cassini Sends Back Images of Enceladus as Winter Nears

» go to article
Of the countless equinoxes Saturn has seen since the birth of the solar system, this one, captured here in a mosaic of light and dark, is the first witnessed up close by an emissary from Earth.
Revealing Saturn's Secrets

Cassini Reveals New Ring Quirks

» go to article
Search
Astronomy Software

Redshift Android

Redshift for Android

The award winning Astronomy Software Redshift for Android. » more

Redshift Pro

Redshift Pro - Astronomy for iOS

The most advanced Redshift app » more

Redshift Astronomy

Redshift - Astronomy for iOS

The award winning Astronomy Software Redshift for iPhone, iPod touch and iPad. » more

Redshift Discover Astronomy deutsch

Redshift Compact - Discover Astronomy for iOS

The beginners version of the leading astronomy App Redshift » more

Redshift 8 Premium

Redshift 8 Premium - Download Edition (Multilingua Edition)

Explore the universe from your PC with the award-winning and professional planetarium software - Languages: German, English, French
 » more

Redshift 8 Premium DL deutsch/engl 2

Redshift 8 Premium - Update from older versions

Update from Redshift 7 or older to the current version of the professional planetarium software - Languages: German, English, French
 » more

Redshift 8 Compact

Redshift 8 Compact - Download Edition

The professional planetarium software for beginners » more