Image taken with HAWK-I

An Elegant Galaxy in an Unusual Light

A new image taken with the powerful HAWK-I camera on ESO’s Very Large Telescope at Paranal Observatory in Chile shows the beautiful barred spiral galaxy NGC 1365 in infrared light. NGC 1365 is a member of the Fornax cluster of galaxies, and lies about 60 million light-years from Earth.
This striking new image, taken with the powerful HAWK-I infrared camera on ESO’s Very Large Telescope at Paranal Observatory in Chile, shows NGC 1365. This beautiful barred spiral galaxy is part of the Fornax cluster of galaxies, and lies about 60 million light-years from Earth. The picture was created from images taken through Y, J, H and K filters and the exposure times were 4, 4, 7 and 12 minutes respectively.

This striking new image, taken with the powerful HAWK-I infrared camera on ESO’s Very Large Telescope at Paranal Observatory in Chile, shows NGC 1365. This beautiful barred spiral galaxy is part of the Fornax cluster of galaxies, and lies about 60 million light-years from Earth. The picture was created from images taken through Y, J, H and K filters and the exposure times were 4, 4, 7 and 12 minutes respectively.

NGC 1365 is one of the best known and most studied barred spiral galaxies and is sometimes nicknamed the Great Barred Spiral Galaxy because of its strikingly perfect form, with the straight bar and two very prominent outer spiral arms. Closer to the centre there is also a second spiral structure and the whole galaxy is laced with delicate dust lanes.

This galaxy is an excellent laboratory for astronomers to study how spiral galaxies form and evolve. The new infrared images from HAWK-I are less affected by the dust that obscures parts of the galaxy than images in visible light and they reveal very clearly the glow from vast numbers of stars in both the bar and the spiral arms. These data were acquired to help astronomers understand the complex flow of material within the galaxy and how it affects the reservoirs of gas from which new stars can form. The huge bar disturbs the shape of the gravitational field of the galaxy and this leads to regions where gas is compressed and star formation is triggered. Many huge young star clusters trace out the main spiral arms and each contains hundreds or thousands of bright young stars that are less than ten million years old. The galaxy is too remote for single stars to be seen in this image and most of the tiny clumps visible in the picture are really star clusters. Over the whole galaxy, stars are forming at a rate of about three times the mass of our Sun per year.

While the bar of the galaxy consists mainly of older stars long past their prime, many new stars are born in stellar nurseries of gas and dust in the inner spiral close to the nucleus. The bar also funnels gas and dust gravitationally into the very centre of the galaxy, where astronomers have found evidence for the presence of a super-massive black hole, well hidden among myriads of intensely bright new stars.

NGC 1365, including its two huge outer spiral arms, spreads over around 200 000 light-years. Different parts of the galaxy take different times to make a full rotation around the core of the galaxy, with the outer parts of the bar completing one circuit in about 350 million years. NGC 1365 and other galaxies of its type have come to more prominence in recent years with new observations indicating that the Milky Way could also be a barred spiral galaxy. Such galaxies are quite common — two thirds of spiral galaxies are barred according to recent estimates, and studying others can help astronomers understand our own galactic home.

Source: ESO
» print article
Related articles:
This visible light image, made with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, shows the galaxy NGC 4666 in the centre. It is a starburst galaxy, about 80 million light-years from Earth, in which particularly intense star formation is taking place. The starburst is thought to be caused by gravitational interactions with neighbouring galaxies, including NGC 4668, visible to the lower left. A combination of supernova explosions and strong winds from massive stars in the starburst region drives a vast outflow of gas from the galaxy into space — a so-called “superwind”. NGC 4666 had previously been observed in X-rays by the ESA XMM-Newton space telescope, and these visible light observations were made to target background objects detected in the earlier X-ray images.

This picture, which covers a field of 16 by 12 arcminutes, is a combination of twelve CCD frames, 67 megapixels each, taken through blue, green and red filters.
The Wide Field Imager

The Superwind Galaxy NGC 4666

» go to article
NGC 253 is one of the closest galaxies to our own. It is a bright spiral that lies about 13 million light-years from Earth in the southern constellation of Sculptor and is noted for being a starburst galaxy with very vigorous star formation and very dusty spiral arms. In the infrared, the rich dust clouds in the galaxy’s spiral arms become nearly transparent and a whole host of cool red stars that are otherwise invisible can be seen. The VISTA infrared images were taken through Y, Z, J, Ks and narrowband filters. The field of view is about 38 by 25 arcminutes.
The Paranal Observatory in Chile

VISTA Views the Sculptor Galaxy

» go to article
Infrared View of the Galaxy  
(c)  Hubble: NASA, ESA, and Q.D. Wang (University of Massachusetts, Amherst); Spitzer: NASA, Jet Propulsion Laboratory, and S. Stolovy (Spitzer Science Center/Caltech)
High Detail Picture

Infrared View of the Galaxy

» go to article
NASA's Galaxy Evolution Explorer found a tail behind a galaxy called IC 3418.
The galaxy IC 3418

Astronomers Discover Star-Studded Galaxy Tail

» go to article
This composite image of data from three different telescopes shows an ongoing collision between two galaxies, NGC 6872 and IC 4970. X-ray data from NASA's Chandra X-ray Observatory is shown in purple, while Spitzer Space Telescope's infrared data is red and optical data from ESO's Very Large Telescope (VLT) is colored red, green and blue.
Black Holes

Galaxy Collision Switches on Black Hole

» go to article
This artist’s impression shows how jets from supermassive black holes could form galaxies, thereby explaining why the mass of black holes is larger in galaxies that contain more stars.
Hen and Egg Problem

Black Hole Caught Zapping Galaxy into Existence?

» go to article
This is a composite image of the most distant galaxy cluster yet detected.
Galaxy Clusters in the Young Cosmos

Record Breaking Galaxy Clusters

» go to article
Stellar streams around the galaxy M 63: remnants of a satellite galaxy that M 63 has swallowed. The central part is an ordinary positive image; in the outer regions, the negative of the image is shown. In this way, the faint structures that are the target of this survey are more readily discerned. This galaxy's distance from Earth is around 30 million light-years. The new survey has, for the first time, shown the presence of such tell-tale traces of spiral galaxies swallowing smaller satellites for galaxies more distant than our own “Local Group” of galaxies.
Spirals eat dwarfs

Galactic tendrils shed light on evolution of spiral galaxies

» go to article
Astronomers have found unexpected rings and arcs of ultraviolet light around a selection of galaxies, four of which are shown here as viewed by NASA's and the European Space Agency's Hubble Space Telescope.

Observations from NASA's Galaxy Evolution Explorer (GALEX) picked out 30 elliptical and lens-shaped "early-type" galaxies with puzzlingly strong ultraviolet emissions but no signs of visible star formation. Early-type galaxies, so the scientists' thinking goes, have already made their stars and now lack the cold gas necessary to build new ones.

Hubble images captured the great, shining rings of ultraviolet light, with some ripples stretching 250,000 light-years.

In these Hubble images, ultraviolet light has been rendered in blue, while green and red light from the galaxies is shown in their natural colors.
Ultraviolet Ring Around the Galaxies

Giant Ultraviolet Rings Found in Resurrected Galaxies

» go to article
A surprisingly large collection of galaxies (red dots in center) stands out at a remarkably large distance in this composite image combining infrared and visible-light observations. NASA's Spitzer Space Telescope contributed to the infrared component of the observations, while shorter-wavelength infrared and visible data are provided by Japan's Subaru telescope atop Mauna Kea, Hawaii.
Looking out to this distance, the cluster appears as it was 9.6 billion years ago, only about three billion years after the Big Bang. Astronomers were surprised to find such a "modern" cluster at an era when its peers tended to be much smaller, presumably taking billions of more years to collect enough galaxies to reach such a size.
A Cosmic Archeological Expedition

Ancient City of Galaxies Looks Surprisingly Modern

» go to article
A figure illustrating the Hubble sequence. On the left are elliptical galaxies, with their shapes ranging from spherical (E0) to elongated (E7). Type S0 is intermediate between elliptical and spiral galaxies. The upper right line of objects stretch from Sa (tightly wound spiral) to Sc (loosely wound spiral). The lower right line shows the barred spirals that range from the tightly wound SBa to loosely wound SBc types.
Astronomers Explain Hubble Sequence

How Galaxies Came To Be

» go to article
Search
Astronomy Software

Redshift 8 Premium

Redshift 8 Premium - Download Edition (Multilingua Edition)

Explore the universe from your PC with the award-winning and professional planetarium software - Languages: German, English, French
 » more

Redshift iphone Neu

Redshift for iPhone, iPad and iPod touch

The award winning Astronomy Software Redshift is now available for iPhone, iPod touch and iPad. » more

Redshift Astronomie

Redshift Astronomy - Download Edition

Redshift for iOS has been consistently voted five of five stars and featured in Apple’s 2011 rewind!
The Mac version Redshift Astronomy with even more features is now available for Mac! » more