Alpha Particle X-ray

Advanced NASA Instrument Gets Close-up on Mars Rocks

NASA's Mars Science Laboratory rover, Curiosity, will carry a next generation, onboard "chemical element reader" to measure the chemical ingredients in Martian rocks and soil. The instrument is one of 10 that will help the rover in its upcoming mission to determine the past and present habitability of a specific area on the Red Planet. Launch is scheduled between Nov. 25 and Dec. 18, 2011, with landing in August 2012.
Image shows Grad student Nicholas Boyd (left) and Principal Investigator Ralf Gellert, both of the University of Guelph, Ontario, Canada, preparing for the installation of the sensor head on the Alpha Particle X-ray Spectrometer instrument during testing at NASA's Jet Propulsion Laboratory.The instrument is part of the Curiosity rover, which will fly on NASA's Mars Science Laboratory mission. The sensor head is 7.8 centimeters, or about 3 inches tall.

Image shows Grad student Nicholas Boyd (left) and Principal Investigator Ralf Gellert, both of the University of Guelph, Ontario, Canada, preparing for the installation of the sensor head on the Alpha Particle X-ray Spectrometer instrument during testing at NASA's Jet Propulsion Laboratory.The instrument is part of the Curiosity rover, which will fly on NASA's Mars Science Laboratory mission. The sensor head is 7.8 centimeters, or about 3 inches tall.

The Alpha Particle X-Ray Spectrometer (APXS) instrument, designed by physics professor Ralf Gellert of the University of Guelph in Ontario, Canada, uses the power of alpha particles, or helium nuclei, and X-rays to bombard a target, causing the target to give off its own characteristic alpha particles and X-ray radiation. This radiation is "read by" an X-ray detector inside the sensor head, which reveals which elements and how much of each are in the rock or soil.

Identifying the elemental composition of lighter elements such as sodium, magnesium or aluminum, as well as heavier elements like iron, nickel or zinc, will help scientists identify the building blocks of the Martian crust. By comparing these findings with those of previous Mars rover findings, scientists can determine if any weathering has taken place since the rock formed ages ago.

All NASA Mars rovers have carried a similar instrument – Pathfinder's rover Sojourner, Spirit and Opportunity, and now Curiosity, too. Improvements have been made with each generation, but the basic design of the instrument has remained the same.

"APXS was modified for Mars Science Laboratory to be faster so it could make quicker measurements. On the Mars Exploration Rovers [Spirit and Opportunity] it took us five to 10 hours to get information that we will now collect in two to three hours," said Gellert, the instrument's principal investigator. "We hope this will help us to investigate more samples."

Another significant change to the next-generation APXS is the cooling system on the X-ray detector chip. The instruments used on Spirit and Opportunity were able to take measurements only at night. But the new cooling system will allow the instrument on Curiosity to take measurements during the day, too.

The main electronics portion of the tissue-box-sized instrument lives in the rover's body, while the sensor head, the size of a soft drink can, is mounted on the robotic arm. With the help of Curiosity's remote sensing instruments – the Chemistry and Camera (ChemCam) instrument and the Mastcam – the rover team will decide where to drive Curiosity for a closer look with the instruments, including APXS. Measurements are taken with the APXS by deploying the sensor head to make direct contact with the desired sample.

The rover's brush will be used to remove dust from rocks to prepare them for inspection by APXS and by MAHLI, the rover's arm-mounted, close-up camera. Whenever promising samples are found, the rover will then use its drill to extract a few grains and feed them into the rover's analytical instruments, SAM and CheMin, which will then make very detailed mineralogical and other investigations.

Scientists will use information from APXS and the other instruments to find the interesting spots and to figure out the present and past environmental conditions that are preserved in the rocks and soils.

"The rovers have answered a lot of questions, but they've also opened up new questions," said Gellert. "Curiosity was designed to pick up where Spirit and Opportunity left off."

Source: NASA
Alpha Particle X-ray - Advanced NASA Instrument Gets Close-up on Mars Rocks | Redshift live

Alpha Particle X-ray

Advanced NASA Instrument Gets Close-up on Mars Rocks

NASA's Mars Science Laboratory rover, Curiosity, will carry a next generation, onboard "chemical element reader" to measure the chemical ingredients in Martian rocks and soil. The instrument is one of 10 that will help the rover in its upcoming mission to determine the past and present habitability of a specific area on the Red Planet. Launch is scheduled between Nov. 25 and Dec. 18, 2011, with landing in August 2012.
Image shows Grad student Nicholas Boyd (left) and Principal Investigator Ralf Gellert, both of the University of Guelph, Ontario, Canada, preparing for the installation of the sensor head on the Alpha Particle X-ray Spectrometer instrument during testing at NASA's Jet Propulsion Laboratory.The instrument is part of the Curiosity rover, which will fly on NASA's Mars Science Laboratory mission. The sensor head is 7.8 centimeters, or about 3 inches tall.

Image shows Grad student Nicholas Boyd (left) and Principal Investigator Ralf Gellert, both of the University of Guelph, Ontario, Canada, preparing for the installation of the sensor head on the Alpha Particle X-ray Spectrometer instrument during testing at NASA's Jet Propulsion Laboratory.The instrument is part of the Curiosity rover, which will fly on NASA's Mars Science Laboratory mission. The sensor head is 7.8 centimeters, or about 3 inches tall.

The Alpha Particle X-Ray Spectrometer (APXS) instrument, designed by physics professor Ralf Gellert of the University of Guelph in Ontario, Canada, uses the power of alpha particles, or helium nuclei, and X-rays to bombard a target, causing the target to give off its own characteristic alpha particles and X-ray radiation. This radiation is "read by" an X-ray detector inside the sensor head, which reveals which elements and how much of each are in the rock or soil.

Identifying the elemental composition of lighter elements such as sodium, magnesium or aluminum, as well as heavier elements like iron, nickel or zinc, will help scientists identify the building blocks of the Martian crust. By comparing these findings with those of previous Mars rover findings, scientists can determine if any weathering has taken place since the rock formed ages ago.

All NASA Mars rovers have carried a similar instrument – Pathfinder's rover Sojourner, Spirit and Opportunity, and now Curiosity, too. Improvements have been made with each generation, but the basic design of the instrument has remained the same.

"APXS was modified for Mars Science Laboratory to be faster so it could make quicker measurements. On the Mars Exploration Rovers [Spirit and Opportunity] it took us five to 10 hours to get information that we will now collect in two to three hours," said Gellert, the instrument's principal investigator. "We hope this will help us to investigate more samples."

Another significant change to the next-generation APXS is the cooling system on the X-ray detector chip. The instruments used on Spirit and Opportunity were able to take measurements only at night. But the new cooling system will allow the instrument on Curiosity to take measurements during the day, too.

The main electronics portion of the tissue-box-sized instrument lives in the rover's body, while the sensor head, the size of a soft drink can, is mounted on the robotic arm. With the help of Curiosity's remote sensing instruments – the Chemistry and Camera (ChemCam) instrument and the Mastcam – the rover team will decide where to drive Curiosity for a closer look with the instruments, including APXS. Measurements are taken with the APXS by deploying the sensor head to make direct contact with the desired sample.

The rover's brush will be used to remove dust from rocks to prepare them for inspection by APXS and by MAHLI, the rover's arm-mounted, close-up camera. Whenever promising samples are found, the rover will then use its drill to extract a few grains and feed them into the rover's analytical instruments, SAM and CheMin, which will then make very detailed mineralogical and other investigations.

Scientists will use information from APXS and the other instruments to find the interesting spots and to figure out the present and past environmental conditions that are preserved in the rocks and soils.

"The rovers have answered a lot of questions, but they've also opened up new questions," said Gellert. "Curiosity was designed to pick up where Spirit and Opportunity left off."

Source: NASA
» print article
Related articles:
NASA's Goddard Space Flight Center, Greenbelt, Md., built SAM. The 40-kilogram (88-pound) instrument includes three laboratory tools for analyzing chemistry, plus mechanisms for handling and processing samples.

In this photograph, technicians and engineers inside a clean room at NASA's Jet Propulsion Laboratory, Pasadena, Calif., prepare to install SAM into the mission's Mars rover, Curiosity. The photograph was taken on Jan. 6, 2011.

The analytical tools in SAM are a mass spectrometer built by NASA Goddard, a gas chromatograph built by French partners supported by France's national space agency in Paris, and a laser spectrometer built by JPL. SAM's sample manipulation system, including 74 sample cups for carrying powdered samples to two ovens, was built by Honeybee Robotics, New York. Curiosity's robotic arm will deliver powdered samples, drilled from rocks or scooped from soil, to SAM's inlet tubes on top of the rover deck. Ovens will heat most samples to about 1,000 degrees Celsius (about 1,800 degrees Fahrenheit). SAM will take in atmospheric samples through separate ports on the side of the rover. Inside SAM are more than 600 meters (more than 650 yards) of wiring, 52 microvalves, a saft-drink-can-size pump that rotates 100,000 times per minute, and many other components.

NASA will launch Curiosity from Florida between Nov. 25 and Dec. 18, 2011, together with other parts of the Mars Science Laboratory spacecraft for delivering the rover to the surface of Mars in August, 2012. During a prime mission lasting one Mars year (two Earth years), researchers will use the rover in one of the most intriguing areas of Mars to investigate whether conditions there have been favorable for microbial life and favorable for preserving evidence about whether life has existed.
Lifting SAM Instrument for Installation into Mars Rover

NASA Mars Rover Will Check for Ingredients of Life

» go to article
Opportunity is imaging the crater's interior to better reveal the geometry of rock layers as a means of defining the stratigraphy and the impact process. Santa Maria is a relatively young, 90-meter-diameter (295-foot-diameter) impact crater. Note the blocks of ejected material around the crater. It is old enough to collect sand dunes in its interior.

Santa Maria crater, located in Meridiani Planum, is about 6 kilometers (4 miles) from the rim of the much larger Endeavour crater, Opportunity's long-term destination. The rim of Endeavour contains spectral indications of phyllosilicates, or clay bearing minerals believed to have formed in wet conditions that could have been more habitable than the later acidic conditions in which the sulfates Opportunity has been exploring formed.

Data from the Compact Reconnaissance Imaging Spectrometer for Mars, which is also on the Mars Reconnaissance Orbiter, show indications of hydrated sulfates on the southeast edge of the Santa Maria crater. The rover team plans to use Opportunity to investigate that area through the solar conjunction period in late January and early February. During that period, Mars is almost directly behind the sun from Earth's perspective, and commanding from Earth to Mars spacecraft is restricted. After that, Opportunity will traverse to the northwest rim of Endeavour crater, aided tremendously by HiRISE images like this for navigation and targeting interesting smaller craters along the way.
NASA's Mars Reconnaissance Orbiter

Rover Will Spend 7th Birthday at Stadium-Size Crater

» go to article
Lengthy detective work with data NASA's Mars Exploration Rover Spirit collected in late 2005 has confirmed that an outcrop called "Comanche" contains a mineral indicating that a past environment was wet and non-acidic, possibly favorable to life.

Spirit used its panoramic camera to capture this view of the Comanche outcrop during the 689th Martian day, or sol, of the rover's mission on Mars (Dec. 11, 2005). The rover's Moessbauer spectrometer, miniature thermal emission spectrometer and alpha particle X-ray spectrometer each examined targets on Comanche that month. On June 3, 2010, scientists using data from all three spectrometers reported that about one-fourth of the composition of Comanche is magnesium iron carbonate. That concentration is 10 times higher than for any previously identified carbonate in a Martian rock.

Carbonates originate in wet, near-neutral conditions but dissolve in acid. The find at Comanche is the first unambiguous evidence from either Spirit of its twin, Opportunity, for a past Martian environment that may have been more favorable to life than the wet but acidic conditions indicated by the rovers' earlier finds.

In this image, Comanche is the dark reddish mound above the center of the view. The image is presented in false color, which makes some differences between materials easier to see. It combines three separate exposures taken through filters admitting wavelengths of 750 nanometers, 530 nanometers and 430 nanometers. The main Comanche outcrop is about 5 meters (16 feet) from left to right from this perspective. The paler material visible at bottom right is part of another outcrop, "Algonquin."
PASADENA, Calif.

NASA Rover Finds Clue to Mars' Past and Environment for Life

» go to article
Spirit attempted to turn all six wheels on Sol 2126 (Saturday, Dec. 26, 2009) to extricate itself from the sand trap known as "Troy," but stopped earlier than expected because of excessive sinkage. Telemetry indicates that the rover moved forward 3 millimeters (0.12 inch), left 2 millimeters (0.08 inch) and down (sinkage) 6 millimeters (0.24 inch). The right-front and right-rear wheels did not move.
Mars Rover Needs Some Sun

Mars Rover Has Uncertain Future

» go to article
This picture is an artist's concept portraying NASA's Mars Science Laboratory, a future mobile robot for investigating Mars' past or present ability to sustain microbial life.
Mars Science Laboratory Rover

Student names new Mars Rover "Curiosity"

» go to article
A screen shot from software used by the Mars Exploration Rover team for assessing movements by Spirit and Opportunity illustrates the degree to which Spirit's wheels have become embedded in soft material at the location called "Troy."
NASA tries to free Mars Rover

Rescue the Mars Rover!

» go to article
Search
Astronomy Software

Solar Eclipse by Redshift

Solar Eclipse by Redshift for iOS

Observe, understand, and marvel at the solar eclipse on August 21, 2017! » more

Solar Eclipse by Redshift

Solar Eclipse by Redshift for Android

Observe, understand, and marvel at the solar eclipse on August 21, 2017! » more

Alpha Particle X-ray

Advanced NASA Instrument Gets Close-up on Mars Rocks

NASA's Mars Science Laboratory rover, Curiosity, will carry a next generation, onboard "chemical element reader" to measure the chemical ingredients in Martian rocks and soil. The instrument is one of 10 that will help the rover in its upcoming mission to determine the past and present habitability of a specific area on the Red Planet. Launch is scheduled between Nov. 25 and Dec. 18, 2011, with landing in August 2012.
Image shows Grad student Nicholas Boyd (left) and Principal Investigator Ralf Gellert, both of the University of Guelph, Ontario, Canada, preparing for the installation of the sensor head on the Alpha Particle X-ray Spectrometer instrument during testing at NASA's Jet Propulsion Laboratory.The instrument is part of the Curiosity rover, which will fly on NASA's Mars Science Laboratory mission. The sensor head is 7.8 centimeters, or about 3 inches tall.

Image shows Grad student Nicholas Boyd (left) and Principal Investigator Ralf Gellert, both of the University of Guelph, Ontario, Canada, preparing for the installation of the sensor head on the Alpha Particle X-ray Spectrometer instrument during testing at NASA's Jet Propulsion Laboratory.The instrument is part of the Curiosity rover, which will fly on NASA's Mars Science Laboratory mission. The sensor head is 7.8 centimeters, or about 3 inches tall.

The Alpha Particle X-Ray Spectrometer (APXS) instrument, designed by physics professor Ralf Gellert of the University of Guelph in Ontario, Canada, uses the power of alpha particles, or helium nuclei, and X-rays to bombard a target, causing the target to give off its own characteristic alpha particles and X-ray radiation. This radiation is "read by" an X-ray detector inside the sensor head, which reveals which elements and how much of each are in the rock or soil.

Identifying the elemental composition of lighter elements such as sodium, magnesium or aluminum, as well as heavier elements like iron, nickel or zinc, will help scientists identify the building blocks of the Martian crust. By comparing these findings with those of previous Mars rover findings, scientists can determine if any weathering has taken place since the rock formed ages ago.

All NASA Mars rovers have carried a similar instrument – Pathfinder's rover Sojourner, Spirit and Opportunity, and now Curiosity, too. Improvements have been made with each generation, but the basic design of the instrument has remained the same.

"APXS was modified for Mars Science Laboratory to be faster so it could make quicker measurements. On the Mars Exploration Rovers [Spirit and Opportunity] it took us five to 10 hours to get information that we will now collect in two to three hours," said Gellert, the instrument's principal investigator. "We hope this will help us to investigate more samples."

Another significant change to the next-generation APXS is the cooling system on the X-ray detector chip. The instruments used on Spirit and Opportunity were able to take measurements only at night. But the new cooling system will allow the instrument on Curiosity to take measurements during the day, too.

The main electronics portion of the tissue-box-sized instrument lives in the rover's body, while the sensor head, the size of a soft drink can, is mounted on the robotic arm. With the help of Curiosity's remote sensing instruments – the Chemistry and Camera (ChemCam) instrument and the Mastcam – the rover team will decide where to drive Curiosity for a closer look with the instruments, including APXS. Measurements are taken with the APXS by deploying the sensor head to make direct contact with the desired sample.

The rover's brush will be used to remove dust from rocks to prepare them for inspection by APXS and by MAHLI, the rover's arm-mounted, close-up camera. Whenever promising samples are found, the rover will then use its drill to extract a few grains and feed them into the rover's analytical instruments, SAM and CheMin, which will then make very detailed mineralogical and other investigations.

Scientists will use information from APXS and the other instruments to find the interesting spots and to figure out the present and past environmental conditions that are preserved in the rocks and soils.

"The rovers have answered a lot of questions, but they've also opened up new questions," said Gellert. "Curiosity was designed to pick up where Spirit and Opportunity left off."

Source: NASA
» print article

Search
Astronomy Software

Solar Eclipse by Redshift

Solar Eclipse by Redshift for iOS

Observe, understand, and marvel at the solar eclipse on August 21, 2017! » more

Solar Eclipse by Redshift

Solar Eclipse by Redshift for Android

Observe, understand, and marvel at the solar eclipse on August 21, 2017! » more